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SUMMARY

As human control tasks in human-machine systems get automated, the human role in the
system is gradually shifting to that of a supervisory control. In this new role, the human
is expected to engage more on automation monitoring. Hence, mental workload is
expected to be the dominant measure of human performance.

Mental workload is a function of information processing by the human brain. Studies in
neurophysiology have indicated that EEG (Electroencephalogram) provides one way to
measure mental workload.

EEG data consist of a transient of voltage oscillations in the brain that are recorded using
the international standard of neurophysioloical and biomedical instrument conditions.
While the use of EEG has an advantage of providing a non-invasive measure of mental
workload, the quantitative methods for analyzing and interpreting EEG data remains an
important field of study. An approach advocated and adopted recently to solving this
problem is the use of neural network.

The overall goal of this investigation is to develop neural network models for analysis of
EEQG data and use the results obtained to classify the level of mental workload
experienced by humans during task processing.

The study uses EEG data on piloting task from the STORM (Simulator for Tactical
Operations Research and Measurement) experiments performed at the Crew System
Integrated Laboratory of the Human Effectiveness Directorate at Wright Patterson Air
Force Base.

The EEG data was grouped by using 80% overlap at 10-sec. interval. Fast Fourier
Transform (FFT) filter was used to process the desired features needed for the neural
network models. The feature data was analyzed with the classical backpropagation
neural network (CBNN) and resilient backpropagation (RBNN) neural network. The
pilot tasks were at three levels: forward, backward, and dual processing, respectively.
Six levels of task complexity were investigated. Generically, a task complexity
corresponds to an aircraft speed. The speeds analyzed range from comfortable workload
(215 knots) to an obvious overload condition (600 knots). The six speed levels used are
215, 325, 380, 435, 490, and 600 knots, respectively. The speed levels are assumed to
simulate the pilot workload in a progressive perception scale increasing from very low
workload to overload.

By using individual subject data on workload levels of twelve pilots, the RBNN was
considered 50% faster in processing the necessary neural network information. This was
measured by the mean number of epochs. For forward piloting task, RBNN took 173
epochs versus 369 by CBNN; for reverse piloting task, RBNN took 233 epochs versus
404 by CNN; and for dual piloting task, RBNN took 177 epochs versus 749 by CBNN.
The main pay off derived from this result is the reduction in computer processing time.
When percentage of classification accuracy was used, the CBNN marginally performed
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better than RBNN as shown in Table I below. However, there was no significant
difference in performance classification when pilots perform dual processing tasks.

Table 1: Mean classification performance (as % accuracy)

Piloting Task
Workload Forward Reverse Dual
Classification CBNN | RBNN | CBNN RBNN CBNN RBNN
Aircraft velocity | 84.01 8234 | 83.19 81.56 79.23 78.33
Pilots 84.14 8246 | 83.83 82.2 79.29 78.38

The results obtained indicate that neural network models can be used to automate the
classification of human mental workload state based on EEG signal data. -Our results -
further indicate that the neural network models used can successfully classify mental
workload states at an average rate of 83%. We believe that the classification rate can be
further improved by the use of fuzzy classification techniques. However, this was not
pursued due to lack of subjective data within and across the workload categories. It
certainly merits further investigation.
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1. INTRODUCTION

Workload classification problem has been, and will continue to provide the theoretical
basis for work design and assignment between human and machines (Eggemeir & Reid,
1986). Unfortunately, in practice, such standard classification metrics like Cooper-Harper
(1969), SWAT and NASA-TLX (Bortolussi, Kantowitz, & Herst, 1986) are often used
solely for determining the levels of the human performance. One important reason for not
using subjective workload metric as a classifier model for human-machine task allocation
is that, in general, subjective measures are rarely stable, insensitive to task changes, and
too local for generalization to diverse contexts. This is a problem this project seeks to
address.

In the past twenty years, due to the developments in biomedical instrumentation
technologies, interest in using human brain state activities to model workload has
increased (Biferno, 1985; Doyle, Omnstein & Galin, 1974; Etterna & Zielhuis, 1971;
Moser & Annon, 1986). The main assumption is that if the brain-state classifier can be
found, then it can be used to detect correlation between brain signals and the level of
workload due to information processing requirement imposed on the operator (Bauer,
Goldstein & Stern, 1987; Beatty, 1982; Horst, Munson & Ruchklin, 1984).

Although the use of EEG has provided a non-invasive and robust approach to mental
workload modeling (Russell & Wilson, 1996), the methods for translating EEG data and
matching them to the subjective rating of cognitive effort as perceived by the human
operator during task processing still remains a difficult task. An approach advocated and
adopted recently to solving this problem is the use of neural network (Gevins, 1988;
Russell & Wilson, 1996; Fukuda, Tsuji, & Kaneko, 1996 Anderson, Derulapalli & Stotz,
1995; Kloppel, 1994; Greene et al; 1996; Fukuda, Tsuji, & Kaneko, 1996).

Before elaborating on our approach, a synopsis of approaches to EEG applications to
mental workload is presented.

2. RELEVANCE OF PAST STUDIES

In the past twenty years, psychophysiologists and neural scientists have advocated the use
of EEG signals as a more realistic approach to understanding human mental workload
during task performance (see, e.g., Kramer, 1991; Wilson & Eggemeier, 1991; Klimesh,
Schimke & Pfurtscheller, 1993).

There are two related topics that are important in these studies. These are

(a) Physiological data acquisition using EEG apparatus.

EEG data consist of a transient of voltage oscillations in the brain that are recorded on

areas corresponding to the international standard of neurophysiological and biomedical
instrumentation conditions (Gasper, 1958). Usually, EEG data consist of a continuous




stream of pulsating Event-related Brain Potentials (ERP). ERPs are viewed as a sequence
of separate but sometimes temporally overlapping components which are influenced by
some combinations of the physical parameters of the eliciting stimuli and psychological
constructs such as varieties of attention, memory or response processes (Humphrey &
Kramer, 1993; Fruhstorfer & Bergstorm, 1969).

EEG signals contain noise, mostly from the surface electrodes, electrical inference, and
other muscular activities. If this noise can be removed, several mental states
corresponding to human activities during task performance can be distinguished by
recognizing variations and patterns in EEG data (Givens, et al, 1979; Hancock, Meshikati
& Robertson, 1985; Kramer & Strayer, 1988; Jasen & Dawnat, 1989; Wu, Ifeachor,
Allen, Wimalaranta & Hudson, 1997).

(b) Classification of EEG Data

The major concern in EEG studies is how to use the EEG data in real-time to measure
momentary fluctuations in mental activities (Lowe, 1998). One approach of solving this
problem is to divide the EEG data into time segments and model the mental activities as
time series, autoregressive (AR) models (Shiao-Liu, Yi-Jean & Cheng-Yuan, 1993; Keim

& Aunon, 1990). Tn this case, each data segment denoted as x (t) at time t is a linear
combination of the values at the g preceding instants. This is defined by equation (1) as:

A g
x(t) = Y, af X (t - kAt) 1)
k=1
Here, At is the sampling time and g is called the AR model’s order. The AR coefficients,
af (k=1,2, ..., g) are usually obtained by minimizing the summed square error defined
by
SQE =Y [x(t) - x(t))’ )

t=0

Another approach to EEG data classification is the use of linear discriminate analysis
(Aasman, Mulder & Mulder, 1987; Horst & Donchin, 1980). The discriminate procedure
computes linear and quadratic functions for classifying observations into two or more
groups on the basis of one or more numeric variables. The classification criterion is based
on either the individual within-group covariance matrices or the pooled covariance
matrix; it also takes into account the prior probabilities of the groups. Each observation is
placed in the class from which it has the smallest generalized square distance.

The third approach and most recently advocated is the use of neural network (Gevins,
1988; Wilson & O’Donnell, 1988; Russell & Wilson, 1996; Anderson, Devulapalli &
Stolz, 1995; Greene et al, 1996; Tsoi, So, & Sergejew, 1994; Wang, He & Chen, 1999).

The theory of neural networks suggested by McCullouch and Pitts (1943) is that the
behavior and performance of a biological organism can be modeled by using its sensory




receptors and data from responsive actions. This concept was equated to transducers that
process electronic information mostly by converting one form of energy into another.
This paradigm analogically resembles the energy exchange during task execution by the
human operator. This principle developed by McCuloch and Pitts (1943) works as
follows: if we start with some (n) receptor neurons ry, 1s,...,I; and some (m) effectors e,
€2,..., €m, conforming to any pre-assigned input-output prescription, we can assemble
these three neurons in a manner that enables us to obtain a single value of the system
behavior. Recent work by Cohen et al, (1990) confirms the robustness of using neural
networks to study human performance such as attentional processes involving color
perception, color naming, and work recognition. Grossberg (1982) in most of his works,
notes that the implicit parallelism of internodal activities, the competitive nature of
excitatory and inhibitory information flows, the chemical equation induced by stress, etc.,
all provide the neural substrates for a mass balance equation similar to a complex
engineering system. Again, this assures us that human performance models can be
formulated as time-dependent dynamic (differential) equations. Workload, a basic
parameter of performance, characteristically fits into the Grossberg’s neural-dynamic
paradigms.

A typical neural network model consists of input nodes, hidden layer levels and nodes,
and output nodes. Although knowledge representation is sequential across the levels, the
model processing is parallel, similar to how humans process information. Classical
workload metrics does not, in principle, differentiate these dimensions in human
performance analysis and can not model this parallel-processing behavior.

3. THE CURRENT STUDY

3.1 Caveat

This study was undertaken to understand the relationship between the increase velocity of
an aircraft and a pilot’s ability to effectively perform given tasks. Levels of mental
workload were defined according to the associated speed in the simulated cockpit.
Simultaneous data from multiple electroencephalograph (EEG) channels was recorded
and used as input features to a backpropagation feedfroward neural network for
classifying the pilot’s cognitive workload. A set of classification results is performed for
12 subjects.

Studies on EEG applications to workload modeling have been performed in the domain
of piloting and flight tasks. For example, Kramer , Sirevaag, & Braun, 1987; Lindholm,
Cheathan, Koriath, & Longridge, 1984; Skelly, Purvis & Wilson, 1987; Roscoe, 1975;
Itoh, Hayashi, Tskui & Saito, 1987; Greene et al, 1996; Wilson, 1973; Sterman et al,
1992; Brookings, Wilson & Swain, 1996. These studies confirm the robustness of EEG
data as a good estimator of the human mental state, and neural network as the best
classifier of those states based on the desired workload classes.




3.2 Neural Network Models

In this study, an artificial neural network is used to classify the pilot’s workload data into
six classes. A neural network classifier works by synaptic modification algorithms that
allow an arbitrarily connected network to develop an internal structure appropriate for a
particular task, such as classifying. In solving classification problems of this nature, a
multi-layer feedforward neural network trained by backpropagation algorithm is utilized.
Upon learning, the network is expected to correctly classify similar data. The workload-
sensitive features of the continuous EEG were identified and extracted for further study.
Effective automated means for classifying the features according to task difficulty
(indicated by trial speed) were developed and tested. The goal was to test the ability of a
neural network model, namely backpropagation, by analyzing the accuracy of prediction
of the workload (indicated by the trial speed).

3.2.1 Classical Backpropagation Neural Network (CBNN)

The neural network model used in this study is a multi-layer network (MLN) operating
with a feedforward backpropagation algorithm (Greene, Bauer, Kabrisky, Rogers,
Russell, & Wilsom, 1996). Figure 1 is used to depict a typical MLN architecture.

INPUT HIDDEN OUTPUT
LAYER . LAYER LAYER
(30 neurons) (10 or 30 neurons) (6 neurons)

A

\

V

Figure 1. The architecture of the neural network -

The neural network model is trained by the Generalized Delta Rule (GDR). The GDR
can be treated as a gradient descent process that converges to the basin of least mean
square (LMS) error between the actual and target outputs. If the outputs produced are
identical to the target value, then no weight change takes place. Otherwise, the LMS




error between the actual and target value is propagated backward through the network to
update the synaptic connection weight.

The normalized input is passed through a set of weights initialized to random values, and
the inner product between the input and weights is calculated using dot product. That
result is then passed through an activation function. The activation function used in this
experiment for all layers was a logistic sigmoid. This function is

1 :
fla)=— 3)

1+e™

Equation (3) limits the output to a certain range of values. The output node is computed
from the weighted sum of the inputs to the node from the previous layer. The weight sum

of inputs is termed the activation and is denoted by a. Each node has an associated
activation function, and associated activation function f(a). The output of the node is the

result of applying this activation function. Hence the output in the /th layer, y,l =f (a,l )

Two other activation function generally chosen are:

1) Linear activation
fla)=a )
(ii) Hyperbolic tangent or symmetric sigmoid activation:
a_ -
f(@)=tanh(a) = £-° )
e +e?
For the model in Figure 1
; n(l-1) )
yi=fl Y aj (6)
j=0 '
By using equation (3)
1 _
)’zl T (7)
&2
I+el 7~
aj =Wy +j ®

where

n; :the number of nodes in layer [

afj :the linear connection function between layer 1 and -1

yg- :the output of jth node in layer [
b ; :the bias input to jth node of layer !




The network is trained on a collection of input-output patterns, with an error
backprogapation method. A pattern is presented at the bottom layer of the network, after
which the network produces an output pattern. This phase is known as forward pass.
The actual patterns of the network in the final layer are compared with their layer values
for the given pattern. The differences between the network output and actual (desired)

output defines the error function similar to £, defined in equation (9). The gradient

search method error is often used to minimize such error function (Sun, Ryan, Dahl,
Iyengar and Sclabass; 1993). A typical error function is '

p J
£, =05 212 . | ©
p=1l]

Where 7,; and Y); are the target and the current output values for pattern p, respéctively,

p is the number of patterns, and j is the number of output nodes in the output layer.

3.2.2 Learning in Backpropagation Neural Network

The learning process in backpropagation algorithm depends in part on the changing error
gradients coming from different weights and the methods used in update the weights.
The learning is based on the delta rule of supervised learning (Peters, Pfurstscheller &

Flyvbjerg, 1988; McClelland & Rumelhart, 1986). The batch propagation weight update
is a form of gradient descent defined by

Wi =wi T+ awy (10)

AW;; can take various forms (Xiao, Yang & Zhou, 1977)

14
AW = — —£ 11
j =N Z'aw (11)

Where 7 is the step size or learning rate and n is the number of iterations.

n < agP n-1
AW] =-1), S AWy (12)
p=1""14

P de

AW =—(1-a) EWP— + AW (13)

p=1""4
In equation (13)

0205, n= 2

l1-a




Backpropagation neural networks support nonlinear input-output relations, and they are
considered useful in EEG pattern classification (Jung & Makeig, 1994; Kloppel, 1994,
Morton, Turney, et al; 1991; Bird, Newton, et al; 1978; Wu, Ifeachor, Allen & Hudson,
1994; Pardey, Roberts & Tarassenko, 19XX; Fukuda, Tsuji & Kaneko, 1995; Hiraiwa,
Simohara & Tokunaga, 1989; Peltoranta & Pfurtscheller, 1994; Reddy6 & Rao, 19XX).

With a backpropagation network, a segment of interaction traces can be presented to the
input layer of a back-propagation network, and the identification or the classification of
the segment can be produced at the output layer of the back-propagation network. The
supervised learning of the back-propagation network is based on examples of known user
patterns.

Because backpropagation networks often out perform conventional linear and polynomial
predictive and statistical techniques in representing nonlinear input-output relations (Ye,
1997), these networks are also valuable in static user modeling. The robustness to noise
and, the parallel processing are some additional merits of backpropagation networks
compared to traditional predictive and statistical techniques.

Moreover, if a backpropagation network is trained in an autoassociative fashion, it stores
user patterns in it structure. When some partial or noisy cue of a stored user pattern is
presented to the input layer of the network, the output layer of the network recalls the
complete user pattern. Hence, back-propagation networks can be utilized for user pattern
storage and retrieval to complete partially recognized user patterns. Retrieved user
patterns can then be used to predict user sequences of actions for automatic execution.

3.2.3 Resilient Backpropagation Neural Network (RBNN)

Riedmiller and Braum (1993) proposed the resilient back-propagation neural network
(RBNN) as an improvement to the CBNN, which has the tendency of getting "trapped”
into local minima during gradient search. Riedmiller and Braum refer to their mode] as
RPROP, which means for Resilient PROPagation.

The RPROP (or RBNN as used here) is an efficient learning adaptation of the weight step
based on local gradient information. The following procedure summarizes the RBNN
working algorithm (Riedmiller & Braum, 1993):

For all weights and biases {

if{ 0z (t—1)*£§ (t)>0Jthen{

w;

ij
Aij (t)= minimum @U (t - 1)* 77+, A pnax )

AWij(t)= —sign[ de (t)}*Aij(t)

oW




Wi (¢ +1)=W; )+ AW @)

}

else if [—E%j—(t-o* aﬁj}(tko ) then{
Ay (t)= maximum (AU (t - 1)* 7, Amin )
Wt +1)=W; [ -1)-AW,; @ -1)

de :

~° (=0
- ®

}

else if (a_?vf,-j_ ¢ 1) a‘;’; €)= OJ then {

de
AWi' = — Slg —{t *Ai' 1
i) W @)[*a;0)

Wi (¢ +1)=W; @)+ AW; ()

}

}
In the above procedure, the learning rule, indicated by its individual update-value A;; is:

-

1) a®
ifaE‘ QEY

+ % A(_t‘—l)
T ow,; oW

2

n * A(.t.—l)

A = (14)

A(l;-_l) , else

where0<77—<1<77+

Every time the partial derivative of the corresponding weight W;; changes it sign, which
indicates that the last update was too big and the algorithm has jumped over a local
minimum, the update-value Aij is decreased by the factor 7~ . If the derivative retains

its sign, the update-value is slightly increased in order to accelerate convergence in
shallow regions.




Once the update-value for each weight is adapted, the wei ght-update itself follows a very
simple rule: if the derivative is positive (increasing error), the weight is decreased by its
update-value, if the derivative is negative, the update-value is added:

a0 %Y
AU , if aWij >0
_or®
aw =14 40 > (15)
0 , else
m.j(”fl):m.](fh/swqj(’_) (16)

However, there is one exception: if the partial derivative changes sign, i.e. the previous
step was too large and the minimum was missed, the previous wei gh-update is reverted.

' D)y ®
O _awl-) WD aw

<0 a7

Due to that backtracking’ weight-step, the derivative is supposed to change its sign once
again in the following step. In order to avoid a double punishment of the update-value,
there should be no adaptation of the update-value in the succeeding step. In practice this

ag (t—l)

can be done by setting

=0 in the A;; adaptation-rule above.

i

The update-values and the weights are changed every time the whole pattern set has been
presented once to the network (learning by epoch).

4. METHODS
4.1 Data Collection

Experimental data based on a study by Russell (1997) were available in electronic form.
EEG data was put on an FTP site for retrieval in September 1998. The data for six
individuals was then retrieved and reviewed. The data is from the STORM 97-98
laboratory studies on piloting tasks. Sample EEG data is shown in Appendix A.

Upon completion of real-time EEG data collection, a great deal of effort was put into
saving the data in a compact format. The data consisted of one-second Fast Fourier
Transform (FFT) samples of EEG on 16 subjects. Each subject experienced two runs for
each workload over two consecutive days. Each run was slightly more than four minutes
varying only by a few seconds. Although eight channels of data representing the eight
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electrodes were stored, only six EEG channels of data were further analyzed in this
experiment. The utilized data were compactly stored in 12 files. Each file represented an
aircraft trail distinguished by the bi-modal (forward/reverse) of the simulated aircraft and
the associated velocity.

Upon reading the FFT data, plots were generated for visual perception. The plots
included six channels of traditional EEG data plus two additional nodes placed close to
the eyes. For each channel the FFT data was recorded in one (1) second intervals. The
corresponding plots of the firs one-second interval are shown in Appendix B.

4.2 Redline Equipment Description

The Work Assessment Monitor (WAM) is a stand-alone physiological monitoring unit
that was used to record the EEG data. It was interfaced with the STORM computer via a
serial interface connection.

The simulator is a cockpit adapted from an F-16 Air intercept trainer whereas the subject
is engaged in a simulation task of ground attach mission, using the aircraft’s cannon to
shoot the land target. The subject is presented with four visual displays along with
auditory information, interacting with the system via a right-hand force stick and a left-
hand throttle. Using the WAM, physiological data was simultaneously collected.

As the velocity of the aircraft intensified, the pilot’s difficulty to accomplish the task
increases accordingly. Thus, the workload was simulated by the manipulation of the
velocity. Trials were used to create conditions ranging from a comfortable level of
mental workload (215 knots) to an obvious overload condition (600) knots). A total of
six levels of velocities (215, 325, 380, 435, 490, 600 knots) were used to simulate the
workload environment. Each velocity level is assumed to simulate workload in a
progressive perception scale increasing from very low workload to overload.

4.3  Preprocessing Data for Feature Selection

4.3.1 EEG Bands

A normal practice in representation of EEG data is the segmentation into frequency
bands. This allows the data to be analyzed by its frequency content so as to depict which
band of frequency play a vital role in EEG analysis. Using a bank of ideal digital band
pass filters, these bands were extracted from the given data. Table 2 below depicts the
range of frequencies used in this experiment.

Table 2. EEG Frequency Bands

Frequency Band Frequency Rang (Hz)
Delta DC-3

Theta 4-7

Alpha 8-12

Beta 13-30
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Data from each electrode site was filtered to produce four bands of EEG, namely delta
(DC-3Hz), theta (4-7Hz), alpha (8-12Hz), beta (13-30Hz). Initially, the ultrabeta band
(31-42Hz) was examined, but on further investigation it was determined that the
amplitudes were very small in comparison to the other bands. Thus the ultrabeta band
was discarded from the set of input features.

The delta frequency band (0.1-3Hz) is usually broad or diffused, may be bilateral or
widespread. It captures the human state of poor attention and low-level of arousal. The
theta band is usually regional, lateralized or diffused. It is physiologically correlated with
distraction or task-mind integration (Jung & Makeig, 1994; Lowe, 1998; Masic,
Pfurtscheller & Flotzinger, 1995). The alpha band correlates to relaxation and composure
and has a strong relationship with the occipital with eyes closed (Steuer, Shack,
Grieszbach & Krause, 19XX). The beta band has a wide range and represents anything
above the alpha threshold. High beta bands correlates with mental activities with hi gh
attention requirement. Mid-range beta (15-18Hz) captures state of alertness and self
awareness of the immediate surround. Low beta (above 12Hz) correlates with inhibited
motion; for example, a confined workspace has the tendency to increase low beta band.

4.3.2 Data Transform -

The EEG has four bands and six channels each. These result in a total of 24 main
features as the input to be used to the neural network. The data was then analyzed
according to log power function. According to the Parseval’s theorem, the power for a

signal in the time domain can be calculated using its frequency representation. The
following equation of log power was used:

p(W)=10xlogo|F(W | (18)
where
W = frequency
F(W); Fourier transform of the signal
p(W)=log power in db scale

Wu, Infeachor, Allen, Wilmalaratna, and Hudson (1997) have suggested an alternative to
the model in equation (18).

P(f)=2Atc? (19a)
14
A=1+ Y a; exp(-i2ifkAs P (19b)
k=1

for —% st%
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where At is the sampling internal, f is the normalized frequency and o 2 js the total
prediction error and can be obtained while computing ay .

A MATLARB program was created to read the data files. As stated there was slightly less
than four minutes of data per trial or per workload, resulting in about 200 seconds of data.
Therefore, the neural network input consisted of approximately 200 x 24 elements of
signal matrix (that is, 200 seconds of data per experimental trial x 24 trials). Each row
vector with 200 data was used per workload trial, giving a total of 1200 (200 x 6)
workload input vectors per subject. '

4.3.3 Data Sequentation

The log power transformed EEG data was partitioned into ten seconds, i.e. 10 one-second
segment at a time. To create continuity of sampling, the data was then subjected to an
80% overlap, as shown in Figure 2.

]1 sec\ll sec 1sec 1sec 1sec 1sec 1sec 1sec 1seclsec »D.:l“ 10s segment
I il Isec lseqq 3 Ds=(08Di}+2s
1sec 1sec
———> D;5=(0.8 D»)+2s
T 1 sec 1 sec
T 1sec 1sec
1 sec lsecl

Figure 2. An illustration of segmehtation procedure

In general, the procedure for the data segment is given by

-1 -2
Val = 6" D, +7(1+8)", n=2

Dl , T= 0

where Val is the data sampled, Dj is the first t second segment; 6 is the % of overlap
desired, and 7 is the sampling interval (in our case 7 =2 sec.).
5. NEURAL NETWORK SIMULATION EXPERIMENTS
5.1 Experimental Design |
In this experiment, a four-layer, feedforward backprogpagation neural network was used.

For stabilization, adaptive learning (learning rate = 0.4) and momentum (0.95) were used
to decrease the time required for training the networks. The network architecture
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consisted of three layers: an input layer, two hidden layers and an output layer. The input
layer consisted of 24 neurons, representing features from the six channels as described
earlier. The first hidden layer consisted of 18 neurons, the second hidden layer 12, and
the output layer consisted of 6 neurons representing six different workloads (velocities).
In this configuration, the network was fully connected with a bias input for each layer.
The weight and biases were initialized using Nguyer-Widrow random generator for
logistic sigmoid neurons. This technique was used to speed up the training process.

The data was divided into two groups, training and testing. Approximately 80 percent of
the data were used for training the neural network. To evaluate the network’s ability to
separate workload initials, the data was trained to separate one class at a time, per subject.
The exemplars for each experiment were randomly chosen.

The experimental design has 2 x 3 x 6 x 12 within subject analysis. There were two types
of neural networks (CBNN and RBNN)), three types of piloting tasks (forward, reverse,

and dual), six levels of aircraft velocity (215, 325, 380, 435, 490, 600 knots), and 12
subjects.

5.2  Piloting Data Analysis

To recognize the effect of the flight task direction on the cognitive state of the pilot, a
three-fold neural network system is proposed. The first network was used to perform
classification on data from the forward direction flight task data. A separate network was
used to perform classification on the reverse direction flight task data. Finally, a dual
direction network, which combined data from both directions, was created. For the
single-direction analysis, per trial input to the neural network consisted of approximately
95 vectors of length 30. This resulted in a total of approximately 570 input vectors per
subject per direction. For dual-direction training, the number of input vectors
approximately doubled. For applications involving automatic EEG analyses, the
informative value of the available features cannot be individually determined in advance.

5.3  Selecting Salient Data for the Neural Network

The Ruck saliency measure (Ruck, et al, 1990) was used to determine which features
should be used as inputs to the network. This technique calculates the partial derivative
of each layer and rank orders the features based on the saliency measure. Random noise
is introduced to the network as an additional input. Noise provides no information to the
network, therefore, those features, which have a saliency measure lower than the saliency
score of the random noise can be removed from the system. Those features removed also
provide no information to the network. The equations for the Ruck saliency is:

9z,

ox; 0

. Fi"_'z;
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whereT; is the saliency for the ith feature, T is the number of outputs, p is the

0z,

X

number of feature vectors in the training set and is the derivative of each output

with respect to each input.

Saliency was computed for several preliminary runs across all subjects. The results from
these preliminary runs suggest variance as a poor measure for mental workload
classification in this study. Therefore, all variance features were removed since their
saliency fell below the saliency of the random noise. This reduces the feature set to 85.
The computer code to implement the saliency algorithm was developed by Russel (1999).

54 Workload Classification Rule

The output of the neural network classifier was normalized into six groups corresponding
to the aircraft speeds. The linguistic vector C can represent the workload class:

C = (very low, low, medium, high, very high, unacceptable)

For the neural network to recognize the value of C for any work condition, the input data
was normalized between O and 1 while maintaining the relationship between exemplars.
Thus, C is converted from a 1 x 6 linguistic variable vector to a 6 x 6 numerical matrix.
The element of C matrix is defined by:

P, G)= (—P(’);P—m—— 22)

Prmax — Prin )
The target matrix for workload 1 through workload 6 is described below:

09 0.1 0.1 01 0.1 0.1]
0.1 09 01 01 0.1 0.1
0.1 01 09 01 01 0.1
0.1 01 01 09 0.1 0.1
01 01 01 01 09 0.1
01 01 01 01 01 09]

Each row of the matrix repfesents the desired or target outputs for the six output nodes.
The error goal for training was set to 0.02 (or two percent).
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6. SAMPLE SIMULAT-ION RESULTS

6.1

Classification by Workload (Flight Task Complexity)

The neural network algorithms (CBNN and RBNN) were applied to the data obtained
from twelve pilot samples. Tables 3 and 4 give the classification results by workload
complexity (aircraft control speed).

Table 3: CBNN Workload Classification ‘by Flight Complexity

Workload |1 2 3 4 5 6 Mean Std
Class
Forward 0.8704 |0.8652 |0.7954 | 0.8646 | 0.8014 | 0.8437 | 0.8401 | 0.0336
Reverse 0.8775 |0.8715 |0.8316 |{0.7977 |0.7761 | 0.8373 | 0.8319 | 0.0399
Dual 0.8288 [0.7991 |0.7696 |0.7672 | 0.7877 1}0.8016 | 0.7923 | 0.0229
Table 4: RBNN Workload Classification by Flight Complexity
Workload |1 2 3 4 5 6 Mean Std
Class
Forward 0.8628 10.8379 | 0.7868 | 0.8305 | 0.7865 | 0.8358 | 0.8234 | 0.0306
Reverse 0.8636 | 0.8451 0.8158 10.7904 | 0.7581 | 0.8203 0.8156 | 0.0378
Dual 0.8200 | 0.7791 0.7605 | 0.7638 | 0.7688 | 0.8074 0.7833 0.0247
Data in Tables 3 and 4 are shown as bar charts in Figure 3.
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Figure 3. Comparison of mean workload classification accuracy by workloads for
classical (CBNN) and resilient (RBNN) neural network models

The results show that the classical backpropagation classifier performs marginally better
than the resilient backpropagation by an average difference of 1.4%. For forward flight
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task, the average classification accuracies were 84.01% by CBNN and 82.34% by

RBNN; for reverse flight task, the average classification accuracies were 83.19% by

CBNN and 81.56% by RBNN; and for dual task, average classification accuracies were
79.23% by CBNN and 78.33% by RBNN. It should be noted that the margin of
classification variability (measured by standard deviation) was high in reverse task under
CBNN.

6.2

Classification Accuracy Across Subjects

Tables 5-6 give the classification results by each subject selected for analysis.

Table 5: CBNN workload classification by subject

Flight | Subject |1 | 2 3 |4 |5 |6 7 |8 9 10 [11 |12 | Mem |Sud
task

Forward 0.85 | 086 | 0851086|079|088 |[077 083 |0.84 080|088 |0.87 |0.8414 | 0.0359
Reverse 0821084 | 089|087 | 083|089 |.084]078 |0.88]077 077|087 |0.8383 |0.0442
Dual 078 1079 | 087|080 072]085 |[075]076 [084[074] 080|081 |0.7929 | 0.0455
Table 6: RBNN workload classification by subject

Flight | Subject | 1 2 3 4 5 6 7 8 9 10 11 12 Mean Std
task

Forward 084 | 084 | 08608107508 06308 |0.85{077 | 088|086 [0.8246 | 0.0487
Reverse 0801083 |088 085|081 08 |.082]078 |0.86[075]075]|0.85]|0.8220 | 0.0466
Dual 077 1079 | 085079072085 |072]077 |082[073]079{0.80]07838 |0.0439

Data in Tables 5-6 are portrayed with bar charts in Figure 4. The results also show the
1.4% marginal classification performance of CBNN over RBNN. For forward flight task,
the average classification accuracies were 84.14% by CBNN and 82.46% by RBNN; for

reverse flight task, the average classification accuracies were 83.83% by CBNN and

82.20% by RBNN; and, for dual task, the average classification accuracies were 79.29%
by CBNN and 78.38% by RBNN.

Classification Accuracy (%)

85 -
84 |

N N N N o 0 o W
o N o o O - N W
1 1

84.14

83.83

78.38

B CBNN
ERBNN

~
(3]

Forward

Reverse

Dual

Figure 4. Comparison of mean workload classification accuracy by subjects

for classical (CBNN) and resilient (RBNN) neural network models
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6.3  Analysis of Processing Time Performance by CBNN and RBNN

Data were collected by the neural network simulation to attain convergence at the
selected error of 2%. The number of steps are known as epochs and correlated with
computation times and cost. The results are shown in Tables 7 and 8 for across subject
classification times.

Table 7: CBNN Epochs Used for Result Convergence

Flight | Subject | 1 2 [3 4 [5 |6 7 8 |9 [10 [11 [12 [Mean |Sd
task .

Forward 453|264 | 288 | 364 | 361 | 218 | 840 | 249 | 285 | 498 [ 279 | 331 | 369 | 169
Reverse 537 | 307 [ 286 [ 256 | 310 | 228 | 536 |353 320 | 711 [ 656 [344 | 404 | 163
Dual 1329 | 520 [ 665 | 658 | 733 [ 419 [ 1332 | 564 | 530 [ 841 | 770 | 598 | 749 | 297
Table 8: RBNN Epochs Used for Result Convergence

Flight | Subject | 1 2 [3 J4 |5 |6 7 8 [9 [10 [11 [12 [Meam |Sd
task . .
Forward 209 [81 137 | 167 [ 177 [45 [700 [97 [107 [253 |73 [160 | 184 [173
Reverse 346 | 130 | 111 |74 | 129 |64 | 337 [217 | 109 | 528 | 613 [ 139 [233 [183
Dual 204 | 123 | 156 | 163 | 153 | 93 | 315 | 133 | 160 | 222 [ 152 | 157 | 177 | 67

The average number of epochs in Tables 7 and 8 are shown in Figure 5. The results show
that RBNN takes shorter number of iterations to achieve the desired results. The CBNN
model takes more iterations, about 50% above RBNN. A high number of iterations (749)
was observed during dual task processing by CBNN compared to only 177 iterations on
the same task by RBNN.

800 - 749
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o
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§ 200 {17 % 177
= 7 : / 7
2|
AL T | ]
Forward Reverse Dual

Figure 5. Comparison of mean processing epochs for
classical (CBNN) and resilient (RBNN) neural network models

In addition to the number of iterations, we also observe the behavior of the learning
curves as exhibited in Appendix C. The results show that the RBNN produces smooth
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and gradual learning curves characterized by multiple local minima (valleys). One main
reason for this smooth and gradual learning curve by the RBNN is that it performs a local
adaptation of the weight-updates according to the behavior of the error function and is not
blurred by the unforeseeable influence of the size of the derivative but only dependent on
the temporal behavior of its sign (Riedmiller & Braum, 1993).

6.4  User Guides to Software Applications
Two types of programs have been developed for this project, the neural network build-in
functions, and the application programs. All the programming are written with Matlab

soft package. Their names and uses are described as follows:

Neural Network Built-in Functions

plotperf.m Function called by neural network toolbox, to plot network
performance
traingdx.m Function called by neural network toolbox to use Gradient

descent with momentum & adaptive learning

backpropagation paradigm to train neural nétwork
trainrp.m Function called by neural network toolbox to use resilient

backpropagation paradigm to train neural network

Application Programs

Load_FFT.m Pre-process raw FFT data;

Classify_CBNN.m Main file to classify workload using CBNN model;
Classify_RBNN.m Main file to classify workload using RBNN model;

LOAD_AFBEEG.m Sub-program of Classify_CBNN.m and
Classify_RBNN.m, to prepare input and output matrix data
for neural networks.

Val_afb.m Sub-program of Classify_ CBNN.m and
Classify_RBNN.m, to construct confusion matrix

Three built-in functions in Matlab Neural Network toolbox have been modified. Before
running the application programs, these functions need to be installed in the Matlab
Neural Network toolbox.

The application programs need to be installed in a suitable directory as well. When
running the application programs, the file Load_FFT.m must be run first to pre-process
the raw FFT data. Since the files: LOAD_AFBEEG.m and Val_afb.m are sub-programs
called by main program, they are not going to be run by themselves.

The user’s guide of installing all these files and running some application forms are
described below one by one.

1. User Guide to install Neural Network Built-in functions

18




The procedures to install the built-in functions are introduced as follows:
1) Open the File Manager of the computer;
2) Locate the directory where Matlab software is saved;
3) Locate the sub-directory of ‘nnet’ following ‘./Matlab/Toolbox/nnet/nnet’;
4) Rename the built-in program ‘plotperf.m’ as ‘plotperf_old.m’;
5) Save the modified plotperf.m file to the nnet directory

2. User Guide to install application files to directories

The procedures to install application files in place are introduced as follows:
1) Open the File Manager of the computer;
2) Establish a sub-directory under C: drive as C:/EEG;
3) Save all the application files under directory C:/EEG

3. User Guide to run Load_FFT.m file

Before running the program, make sure your unzipped FFT data are under the sub-
directory C:/EEG/datafft. Also, make a directory of C:/EEG/dataeeg to hold the data
prepared by program Load_FFT.m.

1)
2)
3)
4)

5)

6)

f

Run Matlab Soft package;

After suggestion sign >>’, type ‘ed C:/EEG’ to enter the sub-directory EEG;
After suggestion sign ‘>>’, type ‘Load_FFT’ to run the file to load FFT data
and manipulate it into the format fit for input into neural network;

When prompted with ‘enter the desired segment size in seconds:’, enter ‘10’
because we are using the ten seconds time window;

Then you will be prompted with ‘enter the amount of desired overlap in
whole %:’, enter ‘80° now because here we prepared the data with 80%
overlap as input to neural network;

The program with load all the FFT data to the desired format and save them to
a sub-directory C:/EEG/dataeeg

4. User Guide to run CBNN Model

Before running the program, make a directory of C:/EEG/RESULTS to hold the file
containing the running outputs of the program Classify_CBNN.m.

The procedures to run the CBNN Model are described as follows:

1)
2)
3)

4)

Run Matlab Soft package;

After suggestion sign >>’, type ‘cd C:/EEG’ enter the sub-directory EEG;
After suggestion sign ‘>>’, type ‘Classify_CBNN’ to run the Classical
Backpropagation Neural Network (CBNN) file;

The program will prompted you with ‘Choose subjects by number (1-12)

"Numerical Codes of SUBJECTS to Examine []:’, you have two choices

here,
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a. If you want to run one subject, just enter one number from 1 to 12,
for example, type ‘3’, to run the third subject, which is subject
‘bk’;

b. If you want to run more than one subject, enter the numbers with
a bracket, for example, type ‘[3:5]" to run subject 3, 4,5, or you
can type ‘[3;5] to run only subject 3and 5;

5) Then comes another prompt ‘Choose the directions: 1-3)
1(Forward), 2(Reverse) and/or 3(Dual) []:’, again you have two choices,

a. If you want to run only one direction, you can type in one number
from 1 to 3. For example, type ‘1’, to run the Forward direction;
b. If you want to run more than one direction, enter the numbers

with a bracket, for example, type ‘[1:3]’, to run three directions,
or ‘[1;3]’ to run two directions, forward and dual.

6) The third prompt is ‘Choose the number of total runs (<11) per subject per
direction, For each direction, each subject will be run x times. x=’. Here,
type in one number from 1 to 10, for example, type ‘5’, to run the neural
network 5 times.

5. User Guide to run RBNN Model

Before running the program, make sure a directory of C:/EEG/RESULTS exist, to hold
the file containing the running outputs of the program Classify_RBNN.m.

The procedures to run the RBNN Model are described as follows:

1) Run Matlab Soft package;

2) After suggestion sign >>’, type ‘cd C:/EEG’ enter the sub-directory EEG;

3) After suggestion sign ‘>>’, type ‘Classify_RBNN’ to run the Resilient
Backpropagation Neura] Network (CBNN) file;

4) The program will prompted you with ‘Choose subjects by number (1-12)
Numerical Codes of SUBJECTS to Examine []:’, you have two choices
here,

a. If you want to run one subject, just enter one number from 1 to 12, for
example, type ‘3’, to run the third subject, which is subject ‘bk’;

b. If you want to run more than one subject, enter the numbers with a
bracket, for example, type ‘[3:5]" to run subject 3, 4,5, or you can type
‘[3;5)’ to run only subject 3 and 5; ,

5) Then comes another prompt ‘Choose the directions: 1-3)
1(Forward), 2(Reverse) and/or 3(Dual) [}:’, again you have two choices,

a. If you want to run only one direction, you can type in one number
from 1 to 3. For example, type ‘1’, to run the Forward direction;

b. If you want to run more than one direction, enter the numbers with a
bracket, for example, type ‘[1:3]’, to run three directions, or ‘[1;3] to
run two directions, forward and dual.

6) The third prompt is ‘Choose the number of total runs (<11) per subject per
direction, For each direction, each subject will be run x times. x=". Here,
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type in one number from 1 to 10, for example, type ‘S’, to run the neural
network 5 times.

7. DISCUSSION AND CONCLUSION
7.1 Discussion

Our study shows that the overall average classification accuracy were consistent with
1.4% margin of differences between CBNN and RBNN. However, if processing time
and cost are to be minimized, the RBNN is recommended. We also observed that by
using either the CBNN or RBNN, the classification accuracy of dual task performance
across subjects and flight complexity lags behind forward and reverse flight tasks by a
margin between 3-6%. These observed classification differences can be attributed to the
perceptual and cognitive complexity involved with dual task processing (Wickens, 1984).
The result further illustrates that the neural network models develop confusions in
differentiating task modalities: forward and backward synchronicity versus tasks
processed independently.

Other observations are worth discussing. As shown in Tables 3 and 4, for forward flight
task, the classifications accurdcies by CBNN were over 80% for all flight speeds except
speed level #3 (380 knots) that was less than 80%, and was 78.65% classification by
RBNN at 490 knots. The highest classification accuracy was for subject #6 (Tables 5 &
6), with scores as high as 89% for reverse task (by CBNN) and forward task (by RBNN).
The worst classification was for subject #7 with 63% classification on forward task (by
RBNN) and 75% classification on dual task (by CBNN).

Based on the sample simulation experiments, we also collected data on misclassified
workload for each of the task categories. Tables 9 - 10 give examples for forward flight
task by the CBNN and RBNN.

Table 9: Sample Workload Classification Table for Forward Flight Task Using CBNN

Exemplar % Classification by CBNN Total %

Data Class | 1 2 3 4 5 6 Misclassification
1 87.1 |4 2.6 1 0 0 6.6

2 5 86.7 3 1 1 0 10.

3 1.5 2.6 79.6 23 0 0 6.4

4 0 1.8 33 86.5 4.3 0 94

5 0 0.8 24 3.9 80.1 3.1 10.2

6 0 0 1.7 23 4.9 84.5 8.9
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Table 10: Sample Workload Classification Table for Forward Flight Task Using RBNN

Exemplar % Classification by CBNN Total %

Data Class | 1 5 3 4 5 6 Misclassification
1 86.51 | 3.2 2.9 1.2 0 0 7.3

2 2.6 84.27 4.3 0.75 0.45 0 8.1

3 1.0 3.6 78.71 2.0 0 0 6.6

4 0 0.8 1 83.15 43 1.8 7.9

5 0 0 1.2 2.0 78.51 2.8 6.0

6 0 0 0.3 4.8 34 82.99 8.5

The meaning of data in Tables 9-10 is as follows: when a known workload class
exemplar is presented to the neural network, the percentage classification accuracy is
observed. For example, in Table 9, the entry on row 1, column 1, is 87.1%. This means
that the CBNN accurately classify workload #1 (very low workload) 87.1% of the time
during the experiment. Other entries corresponding to row 1 indicates percentage
misclassification. For example, the value of 4% on row 1, column 2, indicates that the
network misclassify very low workload (speed level 215 knots) as low workload (speed
level, 325 knots). The last column in Tables 9-10 indicate the total percentage
misclassification.

Note that the misclassification data vary according to the simulation experiments.
Similar data on Tables 9-10 can be obtained for reverse and dual flight tasks. Our
experiments show that on the average, the percentage of misclassification across task
context was an average of 4.5% less than the expected theoretical value of 16.6% (i.e. 1
chance in 6). '

7.2 Conclusion

The results obtained demonstrate the ability to classify human workload levels by the use
of backpropagation neural networks. The results show the ability to differentiate human
perception of workload through data generated by evoked potentials from EEG measures.
There is little doubt that, if appropriately used artificial neural networks offer a robust
method for analyzing human signals related to work performance. The most challenging
task is selecting data pre-processors and feature selection methods for the neural network
models.

We can also argue that classification of EEG signal data by neural network also provide a
description of human perception and control of dynamic actions, both in time and space.
In fact, by analyzing individual human signals, it is possible to determine the correlation
between performance at each frequency bands (delta, theta, alpha, beta) and the level of
training needs, or, even the modality of task processing that best fits the human operator.
This assertion fits well with task types: attention, motor, or cognitive.

By examining the results of the experiments, we observed that the variations in
classification results are also dependent on the ability of the subjects and task complexity.
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Future experimental analysis should look at the effects of skill differentiation on the
classifier algorithms. Comparisons between skill levels will be a challenging modeling
problem, but the results obtained may help to elucidate how people perform at the level
of overload task processing. ,

We like to offer recommendations for future research directions:

D

2)

3)

4)

The results obtained in this report may further be investigated with a recurrent
neural network (Hazarika, Tsoi & Sergejeio, 1997). A recurrent neural network is
similar in nature to the multi-layer perception, except that it may include feedback
and time delays. This can provide a comparative basis for training performance
with and without feedback.

Extend the human signal data to include other physiological measures such as
heart rate, respiration rate, and / or eye blink activity (Russell and Wilson, 1996).
Investigate the availability of other feature selection algorithms that may perform
better than Ruck saliency measures. For example, the use of factor loading or
discrimination analysis across frequency bands and task types.

Data on the pilot’s subjective rating of each task should be incorporated into the

EEG analysis. The classification can then be done with the hybrid model of fuzzy
set theory and neural network.
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POWER SPECTRUM MAGNITUDE (db) OF SIX CHANNELS USED
(SUBJECT: BK, MEAN VALUE OF FIRST 10 SECONDS
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SAMPLE PLOT OF FIVE FILTERED FREQUENCY BANDS
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Appendix C

Sample Plots of Learning Curves for CBNN and RBNN
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